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DIFFUSION ANALOGUE OF A COMBUSTION WAVE IN A SYSTEM WITH DISCRETE SOURCES* 

G.G. CHERNAYA 

The problem of selfsustaining concentration waves in discrete quasione- 
dimensional system with diffusion and threshold activation of the sources 
is considered. A number of applications of such models for describing 
spontaneous contraction waves observed in the course of experiments 
involving single muscle cells is discussed. 

For many bological objects the passive transport of matter (caused by a difference in 
concentration) across some barriers such as biological membranes, denends in a complex manner 
on the absolute values of the concentrations on both sides of the barrier. Normally this is 
caused by the fact that transported material takes part in the chemical reactions which 
radically alter the effective permeability of the barrier. 

One of the most interesting processes of this type is the release of Ca"+ ions from the 
inner cavities (terminal cisterns) of the cardiac musle cell directly into the contractile 
apparatus, the release occurring when the concentration of these ions outside the cavities 
reaches some threshold value. It is also necessary, in order for the release to occur, that 
this external concentration should approach its threshold value from below and at a sufficently 
rapid rate /l, 2/. The membrane which confines the intracellular cisterns, distributed 
within the cells in an orderly manner and separated from each other by distances of order at 
least equal to the size of the cisterns themselves, is regarded as the barrier. 

The successive release of the ions from the cisterns can occur either as the result of 
diffusion of the released calcium, or with the help of electric control signals /3/ propagating 
rapidly along the cell. The signal can appear, in principle, as a result of large changes 
in ion concentrations occurring after calcium has been released from the cisterns. The release 
of calcium from the sequentially distributed cisterns results in the formation of a wave of 
increased concentration of calcium propagating along the cell, fallowed by a mechanical 
concentration wave which was observed experimentally in /4/ (the Cal+ ions locally trigger 
the performance of contractile structures of the cell). 
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Themechanismsof propagation of the wave of increased calcium concentration described 
above show analogies with slow combustion and detonation phenomena in continua /5, 6/. However, 
direct application of the corresponding mathematical models is hampered by the fact that the 
finite distances between the cisterns, which are much too large to accommodate the equations 
with continuously distributed parameters, must be taken into account. At the same time, these 
distances are insufficiently large to restrict the investigation to the interaction of two 
adjacent cisterns only, as was done in certain mathematically similar problems of the theory 
of nervous impulse /3/. 

The present paper deals with the basic problems of concentration waves in a discrete, 
quasione-dimensional system on a half-line and on a segment, using the approximation in which 
the cisterns are replaced by regularly distributed point sources. Special attention is given, 
when discussing the solutions, to the laws governing the propagation of concentration waves. 

1. General formulation of the problems. The diffusion in a binary non-deformable 
continuum containing continuously distributed sinks and discrete sources,is described by the 
following equation for the concentration C = C(t, r): 

Y -$-= div (DgradC) - kW + zZ!"S(r - r8) (1.1) 

Here r, are the coordinates of the s-th source of intensity 1*(*)(t), S(r -c,) is the three- 
dimensional delta function, D is the tensor of diffusion coefficients, kc') is the capacity 
of the sinks and Y is a coefficient characterizing the instantaneous reversible binding of 
the diffusing material caused by the chemical reactions. In order to be able to obtain an 
analytic solution of the problem, we will henceforth assume that D, y and kc') are constant. 
The functions I,(')(t) are, in general, non-linear functionals of C. Below we postulate, for 
simplicity, the threshold character of activation of the sources, i.e. 

(1.3) 

Here C, and v are the threshold values of the variables, H is the Heaviside function, 
tr8 is the instant of s-th activation of the r-th source (in the abbreviated notation t,l= rr). 
We further restirct the analysis to the case when Zrr(') = Zci) for all r, s and v = 0. Eq.tl.1) 
is solved for theregion of prescribed configuration under the initial condition C = C, = const 
and prescribed flux of the material across the boundary. 

Let the diffusion occur in a cylindrical region of radius R and lengthL,with L>R. It 
will be appropriate to use the approximate quasione-dimensional formulation of the problem 
in terms of the quantities averaged over the cross-section of the cylinder. Let the flux 
across the side surface of the cylinder be linearly relatedtothe concentration, and let the 
sources be distributed in the planes x, = r6 so as to form n equally oriented rows along 
lines parallel to the z axis. Then, passing in (1.1) to cylindrical coordinates and integrat- 
ing over the cylinder cross-section we obtain, taking into account (1.2). 

yac _D arc 
-z-- 32 - k (C - Co) + 2 1 (t - ha) H (t - ha) 8 (2 - G) 

r, s=l 
6.4) 

In (1.4) and from now on, C will denote the concentration averaged over the cross-section. 
Z = Z(WnR2, D is the coefficient of longitudinal diffusion and kfkc’) in the effective 
capacity of the sinks. 

The initial value of the concentration Co is assumed to be equal to the stationary 
concentration, and condition (1.3) takes the form 

c (L 5,) = cc, ac (4 +?) 
at lf_f,:>O 

At the initial instant C(0, z) = Co = const, and co< c,. The flow IO = -DC,(t, 0) is 
specified at the boundary z=O, and the boundary z- L is assumed to be impermeable. The 
function Z(t) is assumed integrable over the whole t semi-axis, and the corresponding integral 
characterizing the total amount of material merging from a single source is denoted by I*. 
No special assumptions are made concerning the integrability of Z,(t). 

2. Solution of the problem on a half-line. Let L) 6, i.e. let the region in 
question contain sufficiently many sources so that when the values of 2 are not excessively 
large, then it is natural to solve Eq.cl.1) onthe half-line s> 0,' requiring that the solution 
have a limit as r--f co. Let us introduce the dimensionless variable and parameters 
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(2.4) 

We choose the following scales: for x we choose the distance between the sources x., = 6, 
for t the diffusion time t, = Y6’/(4Ll), for C the quantity C, = hI*t,/(‘46)= I*WD and for I and 
I, the quantityI, = P/t,. We omit the superscript on the dimensionless variables. We have the 

following expressions in dimensionless variables: 

ac 1 av 
at=-rTF - kC + + r, Z (t - t,,) H (t - t,,) 6 (2 - ICI) 

r. -1 
(2.2) 

c @,w x,) = cm 
ac(t,q .~ _ 

at t=*,>o* C(O,4=0 

10(t)=-$lpO, C<ca as x-00 

(2.3) 

(2.4) 

Since the problem is linear, we have 

c=Co(t,Z)+rlC,(t,X) 
f 

where Co and C, are solutions of the problem for the half-line without any sources, and for 
a half-line with a single source at x=x,, respectively, but with zero derivative X/3x at 
the point x = 0. 

When z#z,, we can write in place of (2.2), 

ac T+z-kC 

{C)=O, {%I=-Z(t-&)H(t-tt,.) whens=r, 

Here { } denotes a jump in the values of the function. Let us 
form to (2.5) and to the boundary conditions, taking into account the 
denoting the transforms of C and I by c", P with the correspondinq 
for c", Co’, C,X 

apply the Laplace trans- 
initial condition and 
indices. Then we have 

(2.5) 

pCx= + (0)” - kCX; (C#)‘, (C,X)’ - 0 as x--*~ 

(C,xy= - I,", (Crx)' = 0 as I = 0; 

{C,“} = 0, {(C,“)‘} = -r*e-pt= as 5 = x, 

We will restrict ourselves (see Sect.41 to analysing the events taking place when the 
sources are activated only once, putting t,# = t,. Taking into account the contributions from 
all sources and carrying out the necessary reduction, we can write the transform at the point 
z = z, in the form 

cx (p, 2‘) = s exp(-i#z.)+$[~ cosxs,exp(-pt,--ixs,)+ 
,=l 

0 

2 cos xx, exp (- pt, - lxx,) 1 
; x = 2t 1/p + k 

tl 

The factors accompanying 1," and 1" exp(-ppt,) are, respectively, the transforms of the 
functions 

(2.6) 

When t<t,, we have, according to the convolution theorem, 

cq,x.)=~~o(t-r)co(s,x.)d~+~~l(t-tt,--r)8(t-t,--r)~,~~,x~)~~ 
0 s-=1 0 

12.7) 
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We shall use this general formula in Sect.4 to find & depending on the parameters of the 
problem, from the condition C(t, xl)= C,. In addition, we shall use the following considera- 
tions to find the velocity of the source activation wave. Let rz and the corresponding t, be 
sufficiently large. Then the initial distrubiton C and the condition at x=0 will have a 
vanishingly small effect on the solution. We see from (2.6) and (2.7) that the principal 
contributiontothe function C(tsrzg) is made by the terms of the series with r =s- 1, than 
by those with r=s-2, etc. The second term within the curly brackets in (2.6) becomes 
vanishingly small as s--too compared with the first term. If we assume that the source 
activation wave exists as z-+00 and propagates with constant dimensionless velocity 

c, =lim(t,- t,,)-l (2.8) 
s-m 

then according to (2.71, the following formula will yield cm: 

G (T. ~-7) = &exp[- (kt-S)] 
(2.9) 

Reductioadabsurdum can be used to show that the limit of (2,8), if it exists, is always 
finite and different from zero, i.e. when the sources are of equal strength, the wave can 
neither accelerate without limit, nor can its velocity tend asymptotically to zero. 

3. Solution of the problem on a segment. Using the same examples as in Sect.2 
andretainingthe same notation, we can construct the solution of (2.2) with conditions (2.3) 
and conditions at the boundary: 

la(t)=-_whens=O, g=@whenx==L 

The following relation represents an analogue of (2.7): 

[chxz,chx(L - zJH(E~ -x8)+ chx&@-z,)H(r, - z,)] 

Here N is the total number of sources equal, numerically, to the dimensionless length. 
The factors accompanying I," and I"exp(-ppt,) are, respectively, the transforms of the 

functions 

1 

H(s-r)eos+ cos$(ZV-s)]; p,,-k-$$ 

The formula (2.7) retains its form. 

4. Discussion. The parameters of the system in question which can influence the 
activation of the sources and the times t1, 6%. . . ., as well as the existence of the activation 
wave and its velocity, include C,, k, Z, ZO. I in turn is expressed in terms of the parameters 
characterizing the amount of material Z* ejected from the source, the time of ejection, etc. 
The function I, can differ from it inthevalues of these parameters even when its functional 
form is exactly the same. The absolute (dimensional) values of c,,tl,tlr . . . also depend on 
C, and t*, and tr, tgr . . . are proportional to t*, with coefficients whose values are determined 
as the dimensionless times using, for example, the first formula of (2.3). 

We will choose the following function (in dimensional variables) as the model of the 
dependence of I on t: 

J, (CL, t) = i*un+‘tni?-wnf (4.1) 

The function is characterized by three constants. The constant I* represents the integral 
of J, from o to 00 (see (2.1)); a has the meaning of the characteristic time of variation 
of J,, with a, n used to determine all time-related properties of J,. When n-+0 and a-+=J 
we obtain J,(w, t)= Jb(t). Apart from this case, we also discuss the functions J,(a,t)== JM-o* 

and JI (a, t) = Ja%+. Using the dimensionless variables and replacing a by a0 = at,, we 
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find that the functions I in (2.2), (2.3) and (2.7) take one of the following three forms: 

f. (00) = 6 (t), fo(a) r a+, fr (a) _= aate*t (4.2) 

In the numerical computations which follow, we shall use all three formulas of (4.2) and 
vary the parameters a and k. As regards the function za,we will assume that it is proportional 
to one of these functions with the coefficient J equal to the ratio of the strengths of the 
corresponding sources. 

Using (4.21, we can compute the corresponding convolution integrals appearing in (2.7). 
They are expressed by the functions 

Fo(m,k.B,t)=~exP[-(kt+~)] 
CM-at 

Fo(a,k,B.t)=~ tfo+ + fo-1 

f&=ef@ erf a I/t+1 T1 
[ ( -fi ) 3 

Fl(a.k,B,t)=T &-ctt ( fl’ + fl- + & a I/t exp (- a’t - -g} 

fl*=e*aas aat+ap-+ ( )[ ( erf UJG+-$)TI] 

where a = fk- a, is the error integral. We note that using the formulas given we can 
construct the solution for a more general case, when 10, 1 - f, (a) = a”tneqt/nl, using the 
equation 

The integrals appearing in (2.7) are obtained here with the help of differentiation with 
respect to a parameter and are expressed, in the end, for any n, in terms of the error integral 
and elementary functions. 

When t<tl, the concentration at the point 11 is given by 

C (t, 51) = JJ', (00, k, 1, t), 1, = Jfo(m) (4.6) 
C (t. 51) = JF, (a, k, 1, t). IO = Jfo (a) (4.7) 
C (t, ~1) = JFr (a, k, 1, t), lo = Jfl (4 (4.8) 

For short t this yields 

c (t. Xl) 
ci"Jtan-V, 

z - e-0 

tin 
where n=0,1,2 respectively. 

The same result is obtained from the solution of the problem for a segment (Sect.3) when 
x< L. At small values of ~(a< k) the parameter azfz is real. At fixed t>O the 
expression within the curly brackets in (4.4) or (4.5) tends to a finite limit as a-+0, 
therefore C(t, x1) decreases as a and aa. 

As a-tk, the parameter a tends to zero and expressions (4.4) and (4.5) become in- 
determinate. We use standard methods to obtain, as a+k, 

c (t, q) = 2Jf+ [erf (l/p) - 1 + n-’ ~5-q + 
0 (aa), IO = Jf, (a) 

(4.10) 

C (t, z~) = y8 Jaaeol ((2 + 3t) [erf (1/1/Z) - II + 
(2/l/Z) I/t Cl + t) e-‘/t} + 0 (al), lo = Jfi (a) 

When a>k, the quantity a becomes purely imaginary (a = ir) and increasesinmodulo 
together with a. In order to investigate the behaviour of the quantities defined by formulas 

(4.4) and (4.5), we note tbat erf(B/~/t+ir~~=-~f(irI/T-8/~/2). From this we can conclude that 
the right-hand sides of (4.4) and (4.5) are real, and the expressions within the curly brackets 
are purely imaginary. 

In the discussion that follows, we shall use the results of numerical computations 
carried out on a programmable calculator using the approximate formulas for erf(s) and the real 
and complex values of the argument /7/. Some of these data have already appeared in /4, S/. 

Figs.l-3 show, for the case J=l, families of curves representing the dependence of C 
on t when t=q, with the parameters cc, k. obtained fromthenumerical formulas (4.6)-(4.8). 
The graphs can be used at a fixed value of C= C, to find the time t, necessary to attain the 
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threshold concentration C, at the point zl. 

Of the two branches of the curves shown inthegraphs, the physically meaningful branch 
is the ascending one, corresponding to the change in the concentration C from the lowest 

values, to the maximum possible threshold value C,,. In the graphs C,, coincides with the 
maxima ofthe curves. Raising the threshold value above C,, implies, from the mathematical 

point of view, that the transcendental equations C(t,q)= C, have no solutions, and from the 
physical point of view it implies that the amount of material passing across the cross-section 

x=0 is insufficient to trigger the first source, and hence insufficient for the source 

activation wave to exist. 
The graphs in Fig.1 correspond to formulas (4.6) and illustrate the influence of the 

parameter k. The general shape of the curves and the manner of their distribution are also 
preserved for the solutions (4.7) and (4.8) for fixed a (see the dashed curves in Fig.2 and 

3); when k increases, ti also increases and C,, decreases. The influence of the parameter 

Cl. is illustrated by the solid lines in Fig.2 and 3 which were constructed for k=0.025 using 

formulas (4.7) and (4.8) respectively. 

Fig.1 Fig.2 Fig.3 

We see from the graphs that the time tl taken for a single particular value ofC, increases 

as a decreases, and the value of Gem decreases. This can be given a simple physical 

interpretation. When the material is brought in more slowly, the time tl necessary for the 

value of C, to be reached at the point z1 increases, and C,, decreases due to the occurrence 

of "elution". Changing the form of the function f (see (4.2)) alters the values of t, and 

C em 

some 

will 
C em 

over a narrow range. 

The graphs show that for one and the same set of parameters the time t, cannot exceed 

value tlm representing the abscissa of the maximum of the curve. The latter means that 

conditions necessary for activation of the source are established in the system, this 

occur within a period shorter than the time needed to attain the maximum threshold value 

possible in the situation. 
Figs.2 and 3 show also, for comparison, the results of computations using the asymptotic 

formulas (4.10) when or-+k (the dot-dash lines). We see from the graphs that the asymptotic 

form can be regarded as acceptable. The asymptotic form for the short times t<i/k (see (4.9)) 

is applicable, over a wide range of t, only for the case of I, -6(t). 

We obtain, in accordance with (2.9), the following formulas for the dimensionlessvelocity 

e,, introduced using (2.8), analogous to (4.6)-(4.8): 
m 

C, = 5 Fo (a, k, m/c,, mc_), 10 = fJ (a) 
m=1 

c, = jj FL (a, k, mic,, mc,), 10 = fi (a) 
m=1 

Fig.4 shows a family of curves representing the dependence of C, and c,,obtained from 

the second formula of (4.11) for k=0.025. The curves for other values of k and other forms 

of f differ little from the curves shown. 
The graphs of C,(c,) resemble, by virtue of (2.8) the mirror images of the graphs of 

C, 01) shown in Fig.l-3. In the present case only the descending branch of each curve has a 

physical meaning, and the maximum on the curve corresponds to the largest possible threshold 

value of the concentration allowing for the existence of the wave. If the conditions created 

in the system are suitable for the existence of the source activation wave, then the velocity 
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of the wave propagation cannot fall below a certain value. 

Fig.4 Fig.5 

The curves shown in Fig.5 are of special interest in our discussion. They correspond 
to the graphs constructed using the same values of k=0.025 and all, for the relations 
ce (i/Q (curves 1) and C, (c,) (curves Z), with J=v,, for I -S(t) (solid lines) and IM~~* 
(dashed lines). We see that in both cases the "rate" l/t1 at which any prescribed threshold 
value C, is attained at the position of the first source, is lass than c,. This means that 
in the present case the wave accelerates as it moves. Fig.Ga shows schematically, by dashed 
lines, the curves corresponding to the dependence of C, on 1/(4--tt,), etc. They fill all space 
between the lines C,(l/t,) and C,(c,)_ Both solid lines in the figure attain their maximum 
values. For the first curve the maximum is equal to c,, 
with C,,<c,. 

and for the second curve it is C,,, 
If the given threshold value of the concentration % < &et* conditions arise 

which are suitable for the activation of the first and all subsequent sources, i.e, the wave 
will exist, while if C*,< c, < G7n* the wave cannot appear. 

Taking into account the xapid convergence of series (2.9) and comparing its principal 
term (r=l) with the solution (2.7) at t<t, (first term), we can see that when 10=JII, then 
the valuesofc, computed from these formulas and far removed from C,,, will differ by a 
factor of approximately 2J, for the numerically equal t, and l/c,. It is this aspect that 
governed the choice of J made above. If we take J<Va. then the relative position of the 
curvesC,(i/t,) and C, (c,) will not be changed and the previous arguments will remain in force. 
If on the other hand we beqin to increase the value of the parameter J (the coefficient of 
proportionality between I 0 and I) in the interval from 11,t.o 1, then the relative position of 

Fig.6 

the curves will change and a point of their intersection will appear. Schematically, the 
graph will now resemble that of Fig.bb. It follows therefore that the range of values of 
C, will be split into two regions: in region 1 the wave will be accelerated, and in region 2 
it will be retarded. Fig.6c shows schematically that when J>l, several lines corresponding 
to the dependence of C, on i/t,, ii& - II). . . . will be situated above and to the right of all 
other lines, and will appear in the order reverse to the initial order. 
so that 

If we now choose C, 

GIz<G. < CPA, then a situation will arise in which only the few first sources can 
be activated, i.e. a wave, having appeared and spread over some finite distance, will decay 
rapidly. The higher the value of C,<C,l chosen, the shorter the distance over which the 
wave will spread. 

We note that the summation in (2.6), (2.9) and (4.11) reflects the contributions of the 
preceding sources towards the concentration field near the source under consideration. When 
Cl! =& &V the number of terms of the series essential for the practical ap.plications is small, 
but it grows as C, approaches c,,. The convergence of the series becomes slower, as we can 
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see from, for example (4.3) and (4.11), as the wave velocity ego decreases. 
If we introduce varying values of a, and even more so functionally different emission 

laws for the first and for the following sources, then by suitable selection of the numerical 
coefficients we can obtain even more complicated patterns of relative distributionofthecurves 
C, (c,) and C, (i/t,), C, (1 1 (tz - tl)), . . . . In particular, when I, = Ifa (ao), I = f. (a), and I - 1, a, < ci, then, 
provided that the given threshold value C, is not high, the time t, may be found to exceed 
-1 c, by l-2 orders of magnitude. If we accept the existence of a mechanism which returns 

the system to its initial state after the wave has passed and then activates the source I, 
once again, then waves will be generated repeated1 y and the period will be large, of the order 
>, t1. Such a mechanism can be described, in the simplest case, 
ar,lat = e (I,, c (t, 0)). 

by an equation of the type 

Using the models with threshold non-linearity, whose examples were given in Sect.l-3, we 
can study not only the situation with peridic excitation mentioned above, but also many other 
cases such as e.g. the propagation of a wave in a system which has a barrier offering high 
resistance to diffusion, which cannot let a wave through until the threshold value becomes 
sufficiently low. This also refers to the case when the waves are repeated with increased 
acceleration and frequency caused by the fact that each passage of a wave leads to an increase 
in the noise level, i.e. to a lowering of the threshold. Certain additional possibilities 
of using threshold-type models were discussed in /8/. 

A preliminary analysis /4, 0/ has shown that mathematical models resembling those 
discussed above can be used to study spontaneous contraction waves in the cardiac muscle cells 
described at the beginning of this paper. The waves can be quite complicated at times, for 
example, situations can be observed when a wave generated at one end of the cell disappears 
after passing through a small part of its length. The experiments did not detect any 
acceleration in the wave as it moved along the cell. Not once has a contraction wave been 
detected whose velocity fell below a specified value (50 microns/set). The solutions given 
above offer a possible explanation for this as well as for other special feature of the 
spontaneous waves. 

A particular situation mentioned in the introduction, when a rapid electric signal 
appears (somewhat analogous to the process whereby slow combustion is transformed into a 
detonation), needs an essentially different model, namely, in addition to the relations 
connecting I with time, we need a relation connecting I with a certain parameter ~(t, z) (cell 
membrane potential) which obeys a special parabolic equation with non-linear sources, the 
latter in turn depending on cp,C. 

The author thanks A.K. Tsaturyan for assessing the paper. 
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